University of California, Berkeley
Abstract:Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
Abstract:Uncertainty quantification (UQ) for large language models (LLMs) is a key building block for safety guardrails of daily LLM applications. Yet, even as LLM agents are increasingly deployed in highly complex tasks, most UQ research still centers on single-turn question-answering. We argue that UQ research must shift to realistic settings with interactive agents, and that a new principled framework for agent UQ is needed. This paper presents the first general formulation of agent UQ that subsumes broad classes of existing UQ setups. Under this formulation, we show that prior works implicitly treat LLM UQ as an uncertainty accumulation process, a viewpoint that breaks down for interactive agents in an open world. In contrast, we propose a novel perspective, a conditional uncertainty reduction process, that explicitly models reducible uncertainty over an agent's trajectory by highlighting "interactivity" of actions. From this perspective, we outline a conceptual framework to provide actionable guidance for designing UQ in LLM agent setups. Finally, we conclude with practical implications of the agent UQ in frontier LLM development and domain-specific applications, as well as open remaining problems.
Abstract:Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
Abstract:Large language models (LLMs) increasingly serve as automated judges, yet they remain susceptible to cognitive biases -- often altering their reasoning when faced with spurious prompt-level cues such as consensus claims or authority appeals. Existing mitigations via prompting or supervised fine-tuning fail to generalize, as they modify surface behavior without changing the optimization objective that makes bias cues predictive. To address this gap, we propose Epistemic Independence Training (EIT), a reinforcement learning framework grounded in a key principle: to learn independence, bias cues must be made non-predictive of reward. EIT operationalizes this through a balanced conflict strategy where bias signals are equally likely to support correct and incorrect answers, combined with a reward design that penalizes bias-following without rewarding bias agreement. Experiments on Qwen3-4B demonstrate that EIT improves both accuracy and robustness under adversarial biases, while preserving performance when bias aligns with truth. Notably, models trained only on bandwagon bias generalize to unseen bias types such as authority and distraction, indicating that EIT induces transferable epistemic independence rather than bias-specific heuristics. Code and data are available at https://anonymous.4open.science/r/bias-mitigation-with-rl-BC47.
Abstract:Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +24.8pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
Abstract:Even though demonstrating extraordinary capabilities in code generation and software issue resolving, AI agents' capabilities in the full software DevOps cycle are still unknown. Different from pure code generation, handling the DevOps cycle in real-world software, including developing, deploying, and managing, requires analyzing large-scale projects, understanding dynamic program behaviors, leveraging domain-specific tools, and making sequential decisions. However, existing benchmarks focus on isolated problems and lack environments and tool interfaces for DevOps. We introduce DevOps-Gym, the first end-to-end benchmark for evaluating AI agents across core DevOps workflows: build and configuration, monitoring, issue resolving, and test generation. DevOps-Gym includes 700+ real-world tasks collected from 30+ projects in Java and Go. We develop a semi-automated data collection mechanism with rigorous and non-trivial expert efforts in ensuring the task coverage and quality. Our evaluation of state-of-the-art models and agents reveals fundamental limitations: they struggle with issue resolving and test generation in Java and Go, and remain unable to handle new tasks such as monitoring and build and configuration. These results highlight the need for essential research in automating the full DevOps cycle with AI agents.
Abstract:We argue that the machine learning value chain is structurally unsustainable due to an economic data processing inequality: each state in the data cycle from inputs to model weights to synthetic outputs refines technical signal but strips economic equity from data generators. We show, by analyzing seventy-three public data deals, that the majority of value accrues to aggregators, with documented creator royalties rounding to zero and widespread opacity of deal terms. This is not just an economic welfare concern: as data and its derivatives become economic assets, the feedback loop that sustains current learning algorithms is at risk. We identify three structural faults - missing provenance, asymmetric bargaining power, and non-dynamic pricing - as the operational machinery of this inequality. In our analysis, we trace these problems along the machine learning value chain and propose an Equitable Data-Value Exchange (EDVEX) Framework to enable a minimal market that benefits all participants. Finally, we outline research directions where our community can make concrete contributions to data deals and contextualize our position with related and orthogonal viewpoints.
Abstract:Large language models (LLMs) have demonstrated significant advancements in reasoning and code generation. However, efficiently creating new benchmarks to evaluate these capabilities remains a challenge. Traditional benchmark creation relies on manual human effort, a process that is both expensive and time-consuming. Furthermore, existing benchmarks often contaminate LLM training data, necessitating novel and diverse benchmarks to accurately assess their genuine capabilities. This work introduces InfoSynth, a novel framework for automatically generating and evaluating reasoning benchmarks guided by information-theoretic principles. We propose metrics based on KL-divergence and entropy to quantify benchmark novelty and diversity without relying on costly model evaluations. Building on this framework, we develop an end-to-end pipeline that synthesizes robust Python coding problems from seed datasets using genetic algorithms and iterative code feedback. Our method generates accurate test cases and solutions to new problems 97% of the time, and the synthesized benchmarks consistently exhibit higher novelty and diversity compared to their seed datasets. Moreover, our algorithm provides a method for controlling the novelty/diversity and difficulty of generated problems. InfoSynth offers a scalable, self-verifying pipeline for constructing high-quality, novel and diverse benchmarks for LLMs. Project Page: https://ishirgarg.github.io/infosynth_web/
Abstract:Data teams at frontier AI companies routinely train small proxy models to make critical decisions about pretraining data recipes for full-scale training runs. However, the community has a limited understanding of whether and when conclusions drawn from small-scale experiments reliably transfer to full-scale model training. In this work, we uncover a subtle yet critical issue in the standard experimental protocol for data recipe assessment: the use of identical small-scale model training configurations across all data recipes in the name of "fair" comparison. We show that the experiment conclusions about data quality can flip with even minor adjustments to training hyperparameters, as the optimal training configuration is inherently data-dependent. Moreover, this fixed-configuration protocol diverges from full-scale model development pipelines, where hyperparameter optimization is a standard step. Consequently, we posit that the objective of data recipe assessment should be to identify the recipe that yields the best performance under data-specific tuning. To mitigate the high cost of hyperparameter tuning, we introduce a simple patch to the evaluation protocol: using reduced learning rates for proxy model training. We show that this approach yields relative performance that strongly correlates with that of fully tuned large-scale LLM pretraining runs. Theoretically, we prove that for random-feature models, this approach preserves the ordering of datasets according to their optimal achievable loss. Empirically, we validate this approach across 23 data recipes covering four critical dimensions of data curation, demonstrating dramatic improvements in the reliability of small-scale experiments.
Abstract:Large Language Models (LLMs) display strikingly different generalization behaviors: supervised fine-tuning (SFT) often narrows capability, whereas reinforcement-learning (RL) tuning tends to preserve it. The reasons behind this divergence remain unclear, as prior studies have largely relied on coarse accuracy metrics. We address this gap by introducing a novel benchmark that decomposes reasoning into atomic core skills such as calculation, fact retrieval, simulation, enumeration, and diagnostic, providing a concrete framework for addressing the fundamental question of what constitutes reasoning in LLMs. By isolating and measuring these core skills, the benchmark offers a more granular view of how specific cognitive abilities emerge, transfer, and sometimes collapse during post-training. Combined with analyses of low-level statistical patterns such as distributional divergence and parameter statistics, it enables a fine-grained study of how generalization evolves under SFT and RL across mathematical, scientific reasoning, and non-reasoning tasks. Our meta-probing framework tracks model behavior at different training stages and reveals that RL-tuned models maintain more stable behavioral profiles and resist collapse in reasoning skills, whereas SFT models exhibit sharper drift and overfit to surface patterns. This work provides new insights into the nature of reasoning in LLMs and points toward principles for designing training strategies that foster broad, robust generalization.